Iterative Methods for Finding a Trust-region Step

نویسندگان

  • Jennifer B. Erway
  • Philip E. Gill
  • Joshua D. Griffin
چکیده

We consider the problem of finding an approximate minimizer of a general quadratic function subject to a two-norm constraint. The Steihaug-Toint method minimizes the quadratic over a sequence of expanding subspaces until the iterates either converge to an interior point or cross the constraint boundary. The benefit of this approach is that an approximate solution may be obtained with minimal work and storage. However, the method does not allow the accuracy of a constrained solution to be specified. We propose an extension of the Steihaug-Toint method that allows a solution to be calculated to any prescribed accuracy. If the Steihaug-Toint point lies on the boundary, the constrained problem is solved on a sequence of evolving low-dimensional subspaces. Each subspace includes an accelerator direction obtained from a regularized Newton method applied to the constrained problem. A crucial property of this direction is that it can be computed by applying the conjugate-gradient method to a positive-definite system in both the primal and dual variables of the constrained problem. The method includes a parameter that allows the user to take advantage of the tradeoff between the overall number of function evaluations and matrix-vector products associated with the underlying trust-region method. At one extreme, a low-accuracy solution is obtained that is comparable to the Steihaug-Toint point. At the other extreme, a high-accuracy solution can be specified that minimizes the overall number of function evaluations at the expense of more matrix-vector products.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش به روز رسانی متقارن از مرتبه اول برای حل مسایل بهینه سازی مقیاس بزرگ

The search for finding the local minimization in unconstrained optimization problems and a fixed point of the gradient system of ordinary differential equations are two close problems. Limited-memory algorithms are widely used to solve large-scale problems, while Rang Kuta's methods are also used to solve numerical differential equations. In this paper, using the concept of sub-space method and...

متن کامل

Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique

In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...

متن کامل

A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD

The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...

متن کامل

A Matrix-Free Trust-Region SQP Method for Equality Constrained Optimization

We develop and analyze a trust-region sequential quadratic programming (SQP) method for the solution of smooth equality constrained optimization problems, which allows the inexact and hence iterative solution of linear systems. Iterative solution of linear systems is important in large-scale applications, such as optimization problems with partial differential equation constraints, where direct...

متن کامل

Efficient Multi-Stage Conjugate Gradient for Trust Region Step

The trust region step problem, by solving a sphere constrained quadratic programming, plays a critical role in the trust region Newton method. In this paper, we propose an efficient Multi-Stage Conjugate Gradient (MSCG) algorithm to compute the trust region step in a multi-stage manner. Specifically, when the iterative solution is in the interior of the sphere, we perform the conjugate gradient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2009